Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

3-Benzyl-2,4,6-triphenylpyrylium tetrafluoroborate

The central OC_{5} ring in the cation of the title compound, $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{O}^{+} \cdot \mathrm{BF}_{4}^{-}$, has considerable aromatic character but the pendant aromatic rings are not coplanar. The crystal structure comprises undulating layers of cations separated by BF_{4}^{-} anions with significant intermolecular interactions between them.

Comment

The structure of the title compound, (I) (Fig. 1 and Table 1), shows significant twisting of the pendant aromatic rings out of the central plane. The dihedral angles between the O1/C1-C5 ring and the $\mathrm{C} 6-\mathrm{C} 11, \mathrm{C} 12-\mathrm{C} 17$ and $\mathrm{C} 25-\mathrm{C} 30$ rings are 28.14 (10), 56.70 (11) and $83.44(10)^{\circ}$, respectively. Within the central ring, which formally carries a positive charge, the two $\mathrm{O}-\mathrm{C}$ distances are equal within experimental error and the $\mathrm{C}-\mathrm{C}$ distances lie in the relatively narrow range 1.361 (3)1.414 (3) A. These observations strongly suggest substantial delocalization of π-electron density over this ring.

(I)

In the crystal structure there are a number of intermolecular interactions linking the ions. The primary interactions operating in the crystal structure are illustrated in Fig. 2. Here, $\mathrm{B}-\mathrm{F} \cdots \mathrm{H}$ contacts are highlighted as golden dashed lines. The first contact occurs between the two components of the asymmetric unit so that $\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{~F} 4$ is $2.49 \AA, \mathrm{C} 20 \cdots \mathrm{~F} 4$ is 3.355 (3) \AA and the angle at H 20 is 152°. The second $\mathrm{F} \cdots \mathrm{H}$ contact involves the $\mathrm{C} 8^{\mathrm{i}}$ and F 3 atoms so that $\mathrm{C} 8^{\mathrm{i}}-\mathrm{H} 8^{\mathrm{i}} \cdots \mathrm{F} 3$ is $2.55 \AA, \mathrm{C} 8^{\mathrm{i}} \cdots \mathrm{F} 3$ is 3.321 (3) \AA and the angle at H 8 is $139 \AA$ [symmetry code: (i) $1-x, 1-y,-z$]. The remaining two F atoms serve to link two central O1/C1-C5 rings. The parameters associated with these interactions are $\mathrm{B} 1-\mathrm{F} 1 \cdots$ ring centroid $(\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 5)=3.091$ (2) \AA and angle at $\mathrm{F} 1=114.52(15)^{\circ}$, and $\mathrm{B} 1-\mathrm{F} 2 \cdots$ ring centroid $(\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 5)^{\mathrm{ii}}=$ 3.080 (2) A and angle at F2 = 118.59 (17) ${ }^{\circ}$ [symmetry code: (ii) $\left.1-x, \frac{1}{2}+y, \frac{1}{2}-z\right]$. Formally, these might be considered as $\mathrm{F} \cdot$-ring centroid(O1/C1-C5) interactions, but as seen in the $\mathrm{B}-\mathrm{F} \cdots$ ring centroid $(\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 5)$ angles there is significant bending in the angles so that F1 approaches atoms O1 and C1 at 2.9508 (24) and 2.9766 (28) A, respectively, with the other $\mathrm{F} 1 \cdots \mathrm{C}$ distances being greater than $3.3 \AA$. A similar situation pertains for the interactions involving atom F2. Thus, the

Received 12 July 2006 Accepted 20 July 2006

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.055$
$w R$ factor $=0.142$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]

Figure 1
The asymmetric unit of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Environment about the $\mathrm{BF}_{4}{ }^{-}$anion in (I) (Crystal Impact, 2006). Color code: O (red), C (grey), B (brown) and H (green).
$\mathrm{F} 2 \cdots \mathrm{O} 1^{\mathrm{ii}}, \mathrm{F} 2 \cdots \mathrm{C} 1^{\mathrm{ii}}$ and $\mathrm{F} 2 \cdots \mathrm{C} 5^{\mathrm{ii}}$ distances are 2.9270 (22), 3.1280 (28) and 3.1845 (26) A, respectively, the remaining $\mathrm{F} 2 \cdots \mathrm{C}^{\mathrm{ii}}$ distances being greater than $3.5 \AA$. The only other significant intermolecular contact in the structure of (I) is also illustrated in Fig. 2, i.e. a $\mathrm{C} 18^{\mathrm{iiii}}-\mathrm{H} 18 A^{\text {iiii }} \ldots$ ring centroid(C6C11) contact with an $\mathrm{H} 18 A^{\text {iii }} \ldots$ ring centroid distance of $2.98 \AA$ and an angle of 152° at the $\mathrm{H} 18 A^{\text {iii }}$ atom. The global crystal structure may be described as comprising undulating layers of cations interspersed with anions (see Fig. 3).

Experimental

The title compound was isolated as a by-product in the preparation of 2-(4-hyroxyphenyl)-4,6-diphenylpyrylium tetrafluoroborate from 1,3diphenylpropenone and 4-hydroxyphenylethanone in the presence of boron trifluoride etherate (Aliaga et al., 1997). The two products were separated by fractional crystallization from acetic acid. The title compound, recrystallized from AcOH , had melting point and spec-

Figure 3
Packing diagram for (I), viewed approximately down the a axis (Crystal Impact, 2006). Color code as for Fig. 2.
troscopic properties in agreement with literature values (Marton et al., 1999).

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{O}^{+} \cdot \mathrm{BF}^{4-}$
$M_{r}=486.29$
Monoclinic, $P 2_{2} / c$
$a=10.6170(3) \AA$
$b=13.2065(3) \AA$
$c=17.1985(5) \AA$
$\beta=102.784(1)^{\circ}$
$V=2351.68(11) \AA^{3}$
$Z=4$
$D_{x}=1.374 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, pale yellow
$0.24 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Bruker-Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\text {min }}=0.834, T_{\text {max }}=1$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.142$
$S=1.05$
4136 reflections
325 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0667 P)^{2}\right. \\
\quad+2.1496 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.80 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.341(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.397(3)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.350(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.414(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.361(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.381(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5$	$122.38(17)$		

All H atoms were allowed to ride on their parent atoms in the riding-model approximation at $\mathrm{C}-\mathrm{H}$ distances of $0.95-0.99 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Evidence of some disorder in the position of the BF_{4}^{-}anion can be noted from Fig. 1. However, multiple positions could not be resolved.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduc-

organic papers

tion: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Crystal Impact, 2006); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC X-ray Crystallographic Service, University of Southampton, for the data collection.

References

Aliaga, C., Galdames, J. S. \& Rezende, M. C. (1997). J. Chem. Soc. Perkin Trans 2, pp. 1055-1058.

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435
Crystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Bonn, Germany.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Marton, A. L., Marton, G. I., Feaghici, C. \& Balaban, A. T. (1999). Rev. Roum. Chim. 44, 677-682.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

